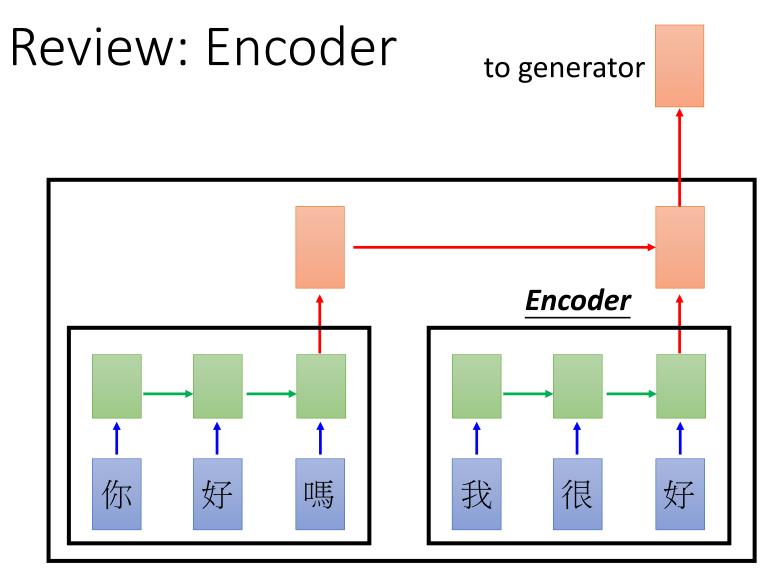
RL and GAN for Sentence Generation and Chat-bot Hung-yi Lee

Outline

- Policy Gradient
- SeqGAN
 - Two techniques: MCMC, partial
 - Experiments: SeqGAN and dialogue
- Original GAN
 - MadliGAN
 - Gumbel

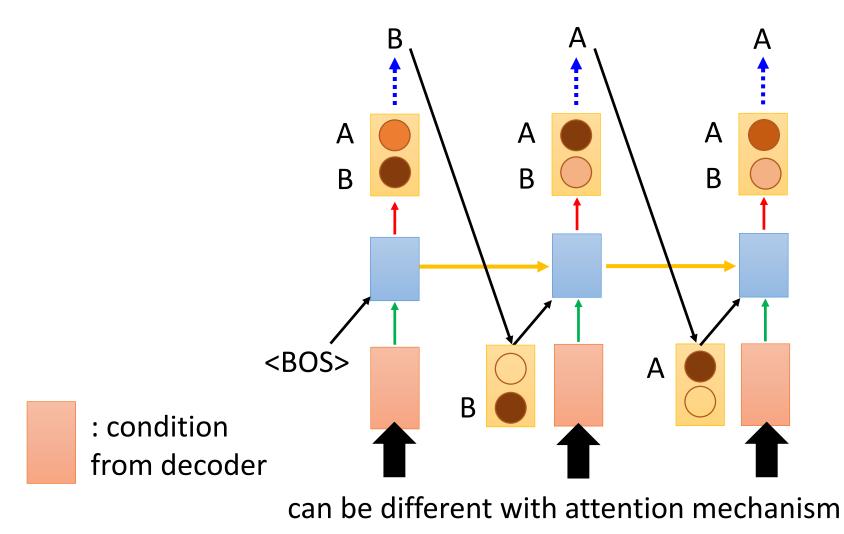
Review: Chat-bot

 Sequence-to-sequence learning A: $\Delta \Delta \Delta$ output Training data: sentence A: 000 Encoder Generator B: XXX A: $\Delta \Delta \Delta$ history Input information sentence A: 000 B: XXX

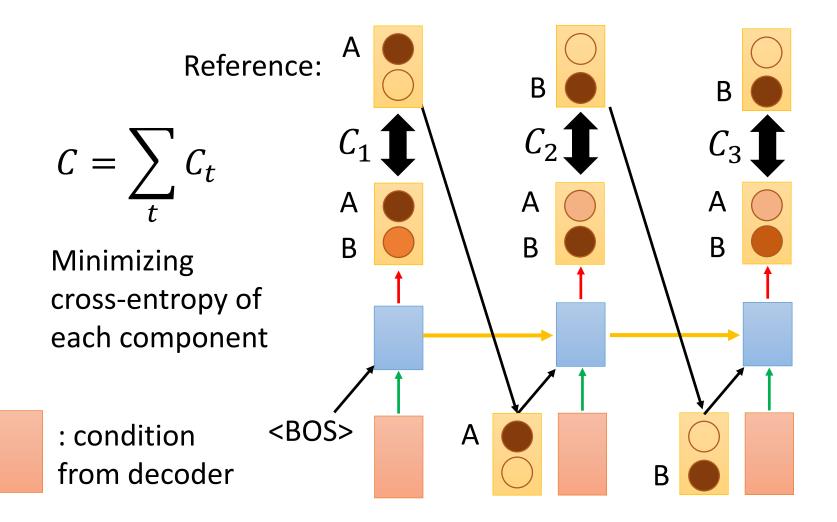


Hierarchical Encoder

Review: Generator

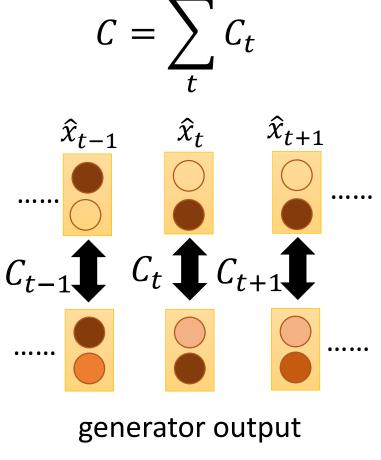


Review: Training Generator



Review: Training Generator

Training data: (h, \hat{x})



h: input sentence and history/context \hat{x} : correct response (word sequence) \hat{x}_t : t-th word, $\hat{x}_{1:t}$: first t words of \hat{x} $C_t = -\log P_{\theta}(\hat{x}_t | \hat{x}_{1:t-1}, h)$ $C = -\sum log P(\hat{x}_t | \hat{x}_{1:t-1}, h)$ $= -log P(\hat{x}_1|h) P(\hat{x}_t|\hat{x}_{1:t-1},h)$ $\cdots P(\hat{x}_T | \hat{x}_{1 \cdot T-1}, h)$ $\dots = -logP(\hat{x}|h)$

Maximizing the likelihood of generating \hat{x} given h

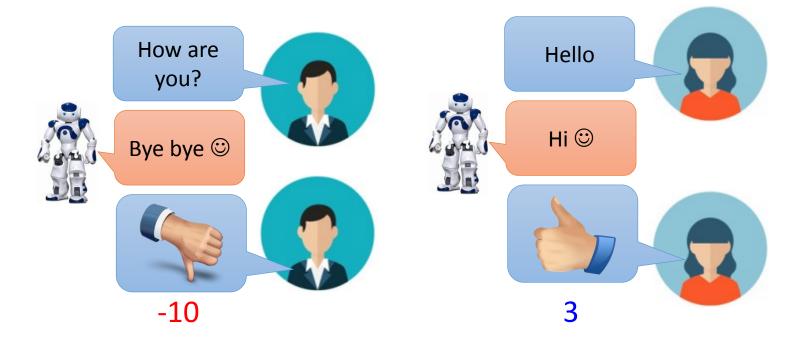
RL for Sentence Generation

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, "Deep Reinforcement Learning for Dialogue Generation", EMNLP 2016

Introduction

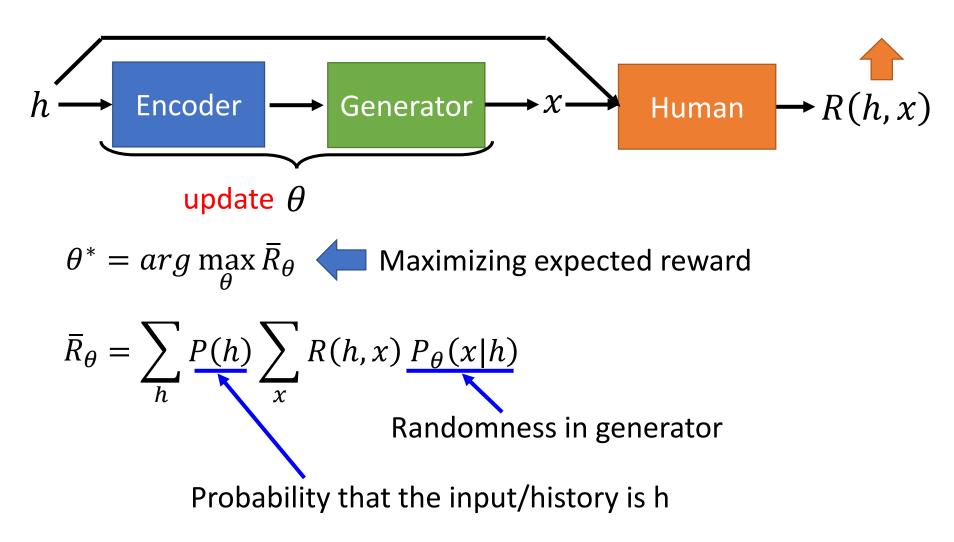
https://image.freepik.com/free-vector/varietyof-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/varietyof-human-avatars_766615.htm

• Machine obtains feedback from user

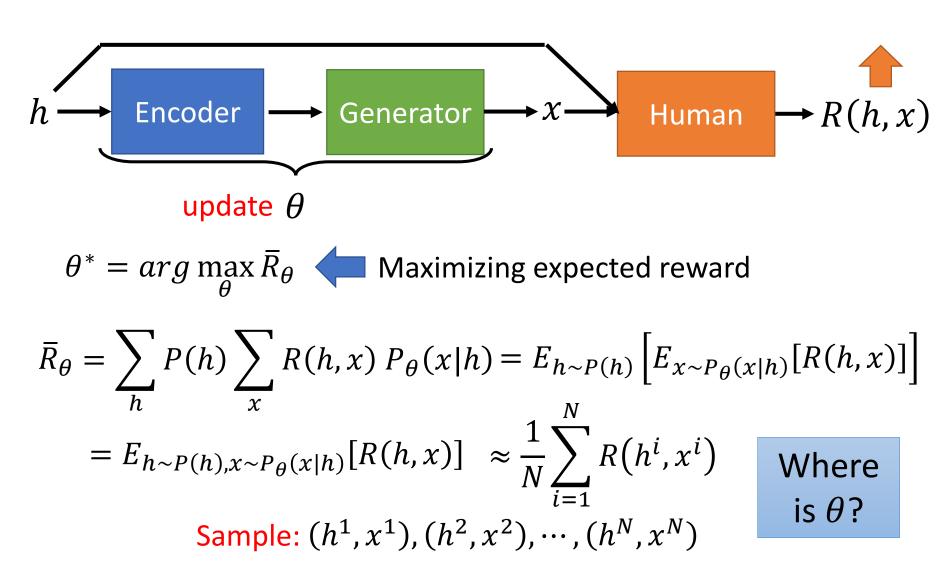


Chat-bot learns to maximize the *expected reward*

Maximizing Expected Reward



Maximizing Expected Reward



Policy Gradient

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i})$$

$$\overline{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) \overline{P}_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \overline{\nabla} log P_{\theta}(x|h)$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \frac{\overline{P}_{\theta}(x|h)}{P_{\theta}(x|h)}$$
Sampling

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \overline{\nabla} log P_{\theta}(x|h)$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x) \overline{\nabla} log P_{\theta}(x|h)]$$

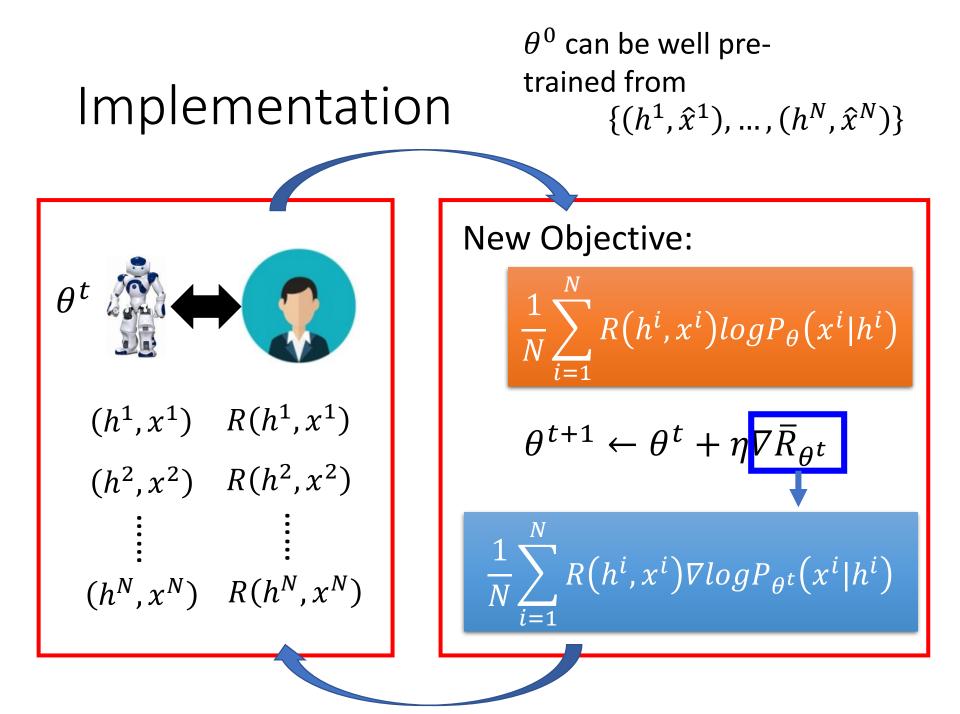
Policy Gradient

Gradient Ascent

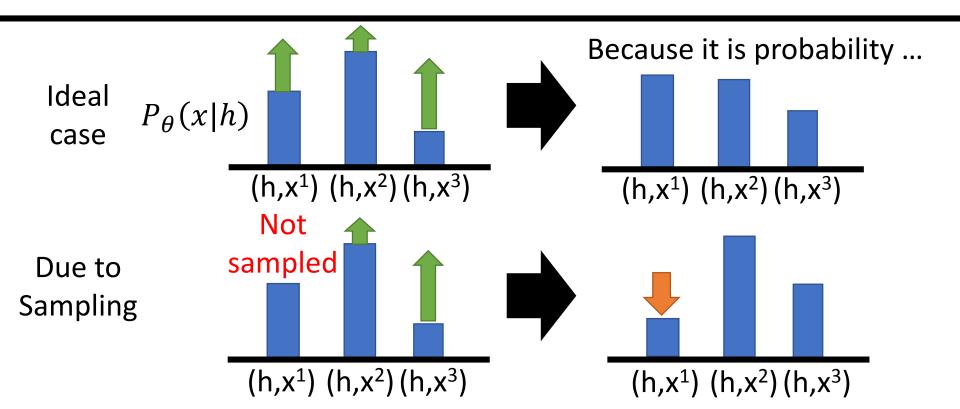
$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$
$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | h^{i})$$

 $R(h^{i}, x^{i}) \text{ is positive}$ $After updating \theta, P_{\theta}(x^{i}|h^{i}) \text{ will increase}$ $R(h^{i}, x^{i}) \text{ is negative}$ $After updating \theta, P_{\theta}(x^{i}|h^{i}) \text{ will decrease}$

Imple	ementation	$\begin{array}{c} \leftarrow & \text{Genera} \\ \leftarrow & \text{tor} \\ \leftarrow & \text{Human} \end{array} \xrightarrow{k} x^{i} \\ \leftarrow & R(h^{i}, x^{i}) \end{array}$
	Maximum Likelihood	Reinforcement Learning
Objective Function	$\frac{1}{N} \sum_{i=1}^{N} log P_{\theta}(\hat{x}^{i} h^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(h^{i}, x^{i}) log P_{\theta}(x^{i} h^{i})$
Gradient	$\frac{1}{N} \sum_{i=1}^{N} \nabla log P_{\theta}(\hat{x}^{i} h^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} h^{i})$
Training Data	$\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$ $R(h^i, \hat{x}^i) = 1$	$\{(h^1, x^1),, (h^N, x^N)\}$ Sampling as training data weighted by $R(h^i, x^i)$

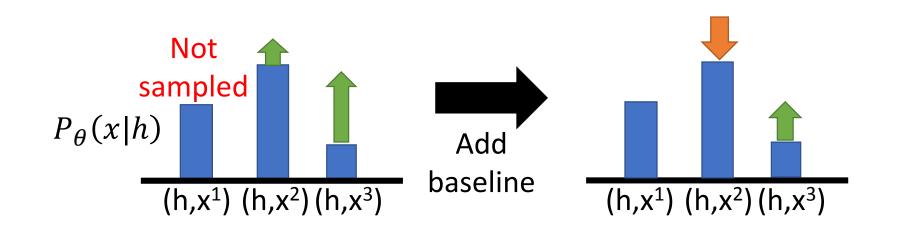


Add a Baseline If $R(h^i, x^i)$ is always positive $\frac{1}{N} \sum_{i=1}^{N} R(h^i, x^i) \log \nabla P_{\theta}(x^i | h^i)$



Add a Baseline
If
$$R(h^i, x^i)$$
 is always positive

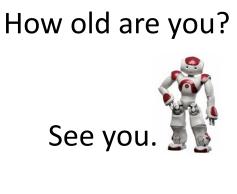
$$\frac{1}{N} \sum_{i=1}^{N} R(h^i, x^i) \log \nabla P_{\theta}(x^i | h^i) \longrightarrow \frac{1}{N} \sum_{i=1}^{N} (R(h^i, x^i) - b) \log \nabla P_{\theta}(x^i | h^i)$$

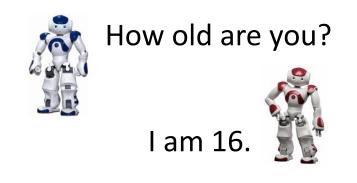


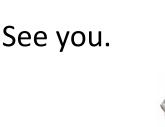
There are several ways to obtain the baseline b.

Alpha GO style training !

Let two agents talk to each other







See you. 🧵

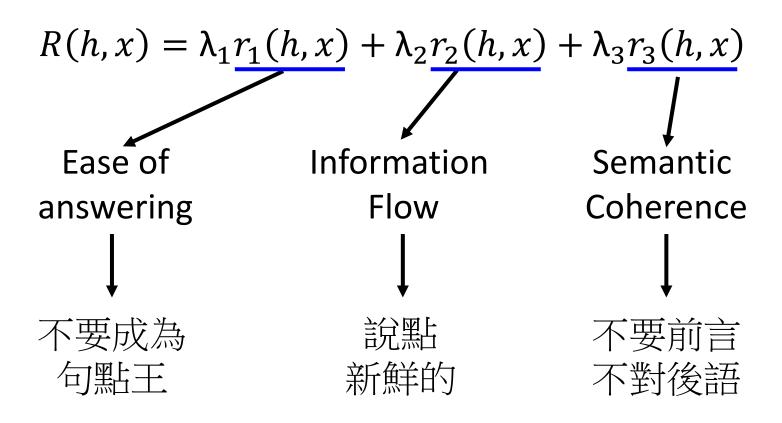
What make you think so?

I though you were 12.

Using a pre-defined evaluation function to compute R(h,x)

Example Reward

 The final reward R(h,x) is the weighted sum of three terms r₁(h,x), r₂(h,x) and r₃(h,x)



Example Results

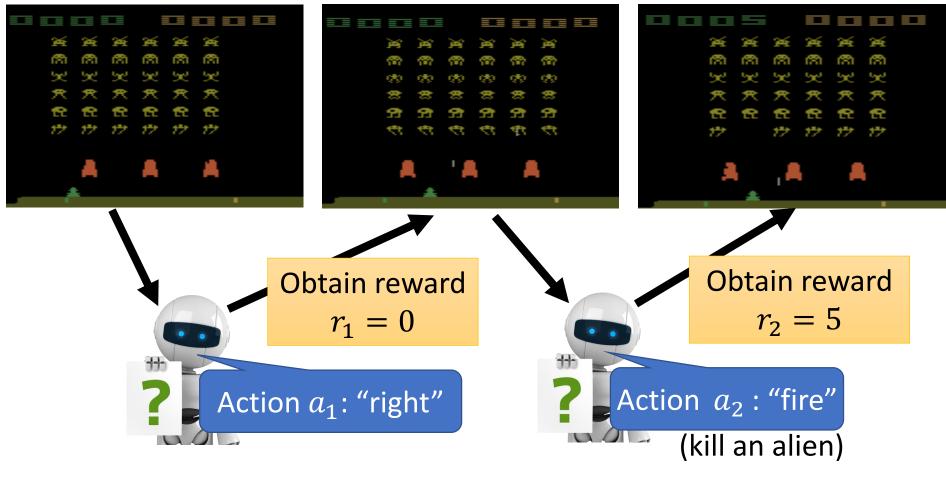
Baseline mutual information model (Li et al. 2015)	Proposed reinforcement learning model

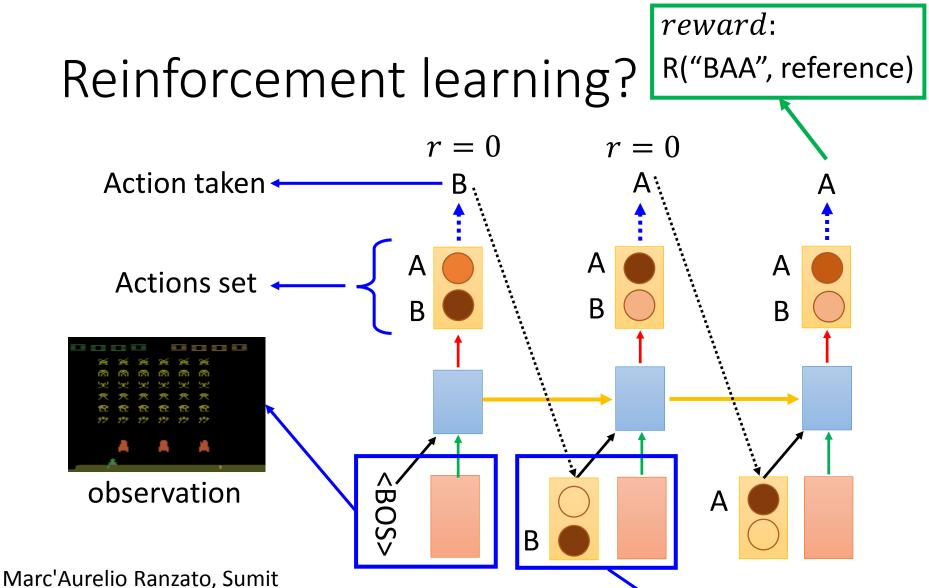
Reinforcement learning?

Start with observation *s*₁

Observation s_2

Observation s_3



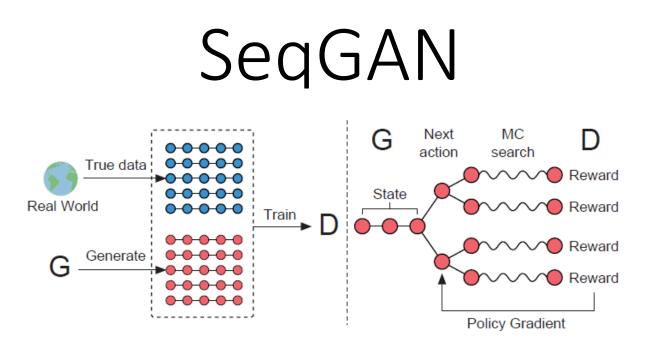


Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

The action we take influence the observation in the next step

Reinforcement learning?

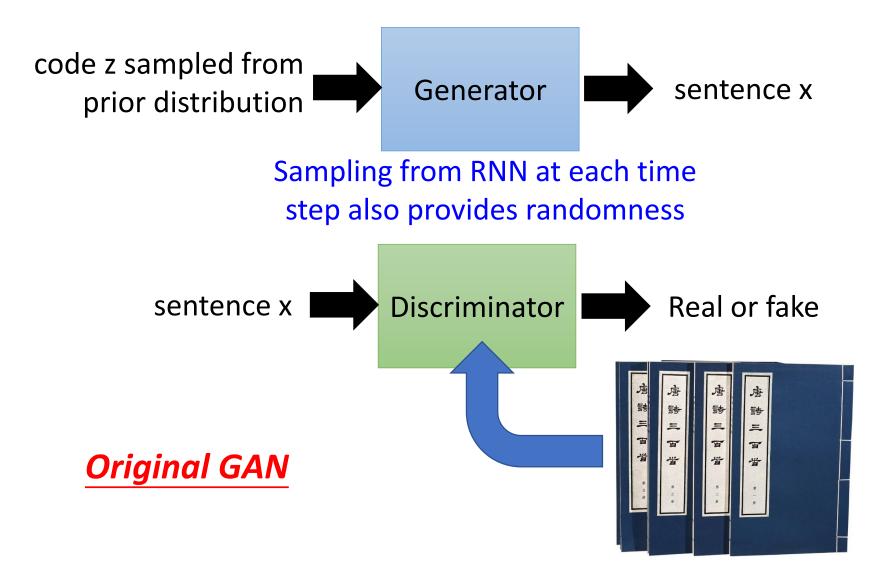
- One can use any advanced RL techniques here.
- For example, actor-critic
 - Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua Bengio. "An Actor-Critic Algorithm for Sequence Prediction." ICLR, 2017.



Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient", AAAI, 2017

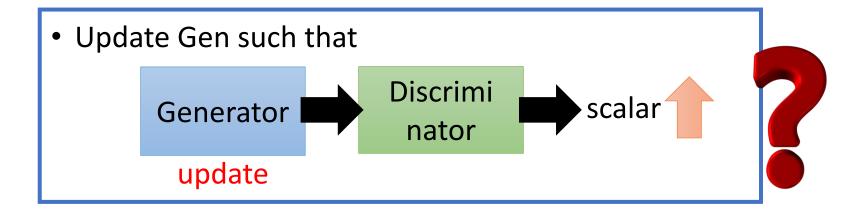
Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, "Adversarial Learning for Neural Dialogue Generation", arXiv preprint, 2017

Basic Idea – Sentence Generation



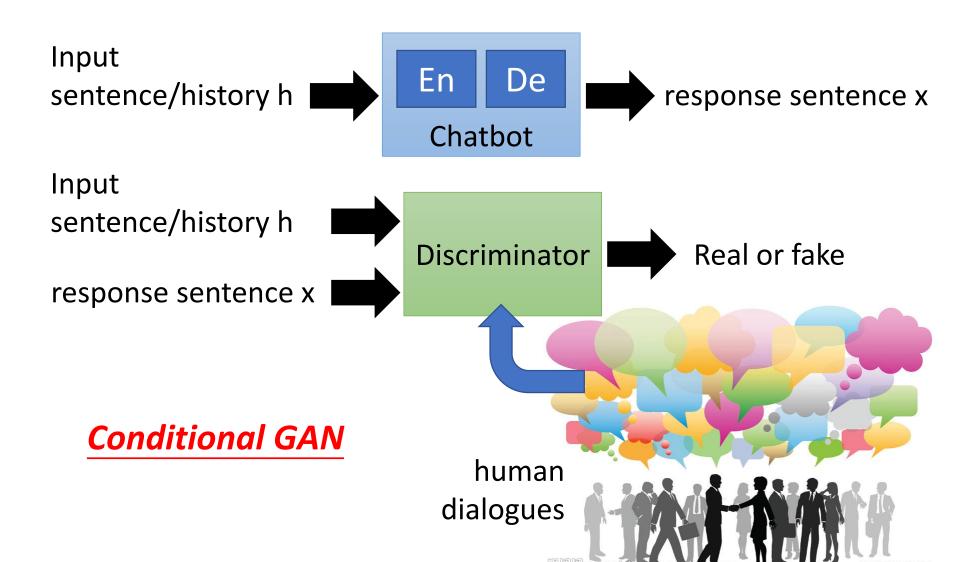
Algorithm – Sentence Generation

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real sentences *x* from database
 - Generate sentences \tilde{x} by Gen
 - Update Dis to increase Dis(x) and decrease $Dis(\tilde{x})$



http://www.nipic.com/show/3/83/3936650kd7476069.html

Basic Idea – Chat-bot



Algorithm – Chat-bot

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real history h and sentence x from database

Training data:

h

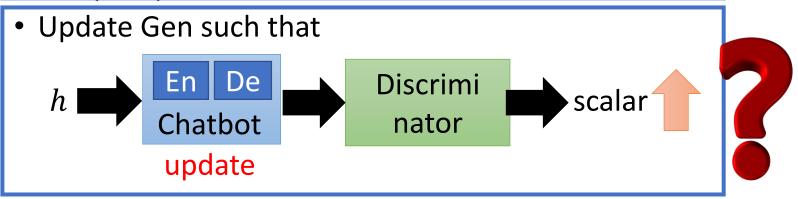
Х

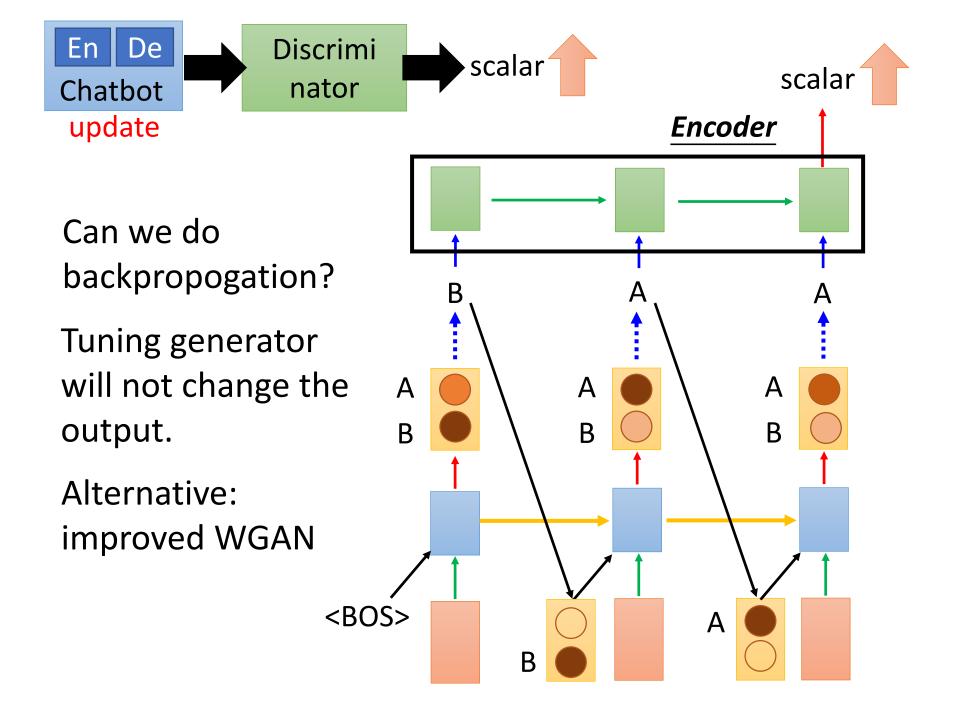
A: 000

B: XXX

A: $\Delta \Delta \Delta$

- Sample real history h' from database, and generate sentences \tilde{x} by Gen(h')
- Update Dis to increase Dis(h, x) and decrease $Dis(h', \tilde{x})$





Reinforcement Learning

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward

$$\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\text{reward}}{D(h^{i}, x^{i})} - b) \nabla \log P_{\theta}(x^{i} | h^{i})$$

Discriminator Score

- Different from typical RL
 - The discriminator would update

Reward for Every Generation Step $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} (D(h^{i}, x^{i}) - b) \nabla log P_{\theta}(x^{i} | h^{i})$

 $h^{i} = \text{``What is your name?''} \quad D(h^{i}, x^{i}) - b \text{ is negative}$ $x^{i} = \text{``I don't know''} \qquad Update \ \theta \text{ to decrease } \log P_{\theta}(x^{i}|h^{i})$ $log P_{\theta}(x^{i}|h^{i}) = log P(x_{1}^{i}|h^{i}) + log P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$ $P("I"|h^{i}) = P(x_{1}^{i}|h^{i}) + P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$

 $h^{i} = \text{``What is your name?''} \quad D(h^{i}, x^{i}) - b \text{ is positive}$ $x^{i} = \text{``I am John''} \qquad \text{Update } \theta \text{ to increase } \log P_{\theta}(x^{i}|h^{i})$ $log P_{\theta}(x^{i}|h^{i}) = log P(x_{1}^{i}|h^{i}) + log P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$

 $P("I"|h^i)$

Reward for Every Generation Step

$$h^{i} = \text{``What is your name?''} \qquad x^{i} = \text{``I don't know''}$$

$$logP_{\theta}(x^{i}|h^{i}) = logP(x_{1}^{i}|h^{i}) + logP(x_{2}^{i}|h^{i}, x_{1}^{i}) + logP(x_{3}^{i}|h^{i}, x_{1:2}^{i})$$

$$P("I"|h^{i}) \qquad P("don't"|h^{i}, "I") \qquad P("know"|h^{i}, "I don't")$$

$$\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} (Q(h^{i}, x_{1:t}^{i}) - b) \nabla logP_{\theta}(x_{t}^{i}|h^{i}, x_{1:t-1}^{i})$$

Method 1. Monte Carlo (MC) Search

Method 2. Discriminator For Partially Decoded Sequences

Monte Carlo Search

• How to estimate $Q(h^i, x_{1:t}^i)$?

$$Q("What is your name?", "I") h^{i} x_{1}^{i}$$

$$x^{A} = I \text{ am John} D(h^{i}, x^{A}) = 1.0 for sampling is needed$$

$$x^{A} = I \text{ am happy} D(h^{i}, x^{B}) = 0.1 x^{C} = I \text{ don't know} D(h^{i}, x^{C}) = 0.1 x^{D} = I \text{ am superman} D(h^{i}, x^{D}) = 0.8$$

avg

A wall and game anatom

Rewarding Partially Decoded Sequences

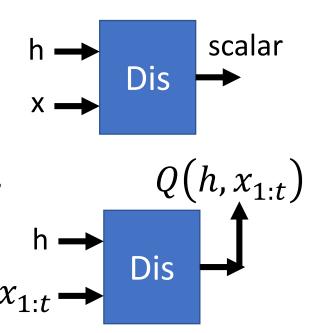
- Training a discriminator that is able to assign rewards to both fully and partially decoded sequences
 - Break generated sequences into partial sequences

h="What is your name?", x="I am john"h="What is your name?", x="I am"

h="What is your name?", x="I"

- h="What is your name?", x="I don't know"
- h="What is your name?", x="I don't"

h="What is your name?", x="I"



Teacher Forcing

- The training of generative model is unstable
 - This reward is used to promote or discourage the generator's own generated sequences.
 - Usually It knows that the generated results are bad, but does not know what results are good.
- Teacher Forcing

Training Data for SeqGAN: $\{(h^1, x^1), \dots, (h^N, x^N)\}$

 Obtained by sampling

 weighted by $D(h^i, x^i)$ Adding more Data: $\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$

 Real data

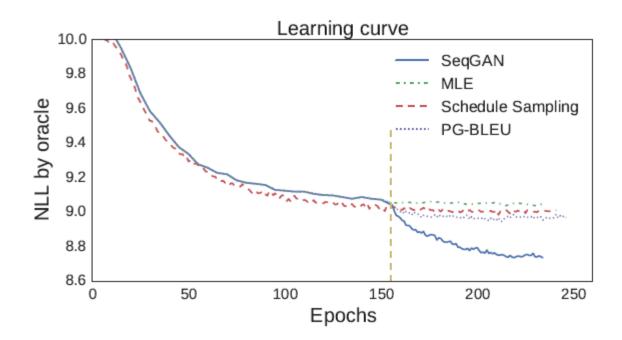
 Consider $D(h^i, \hat{x}^i) = 1$

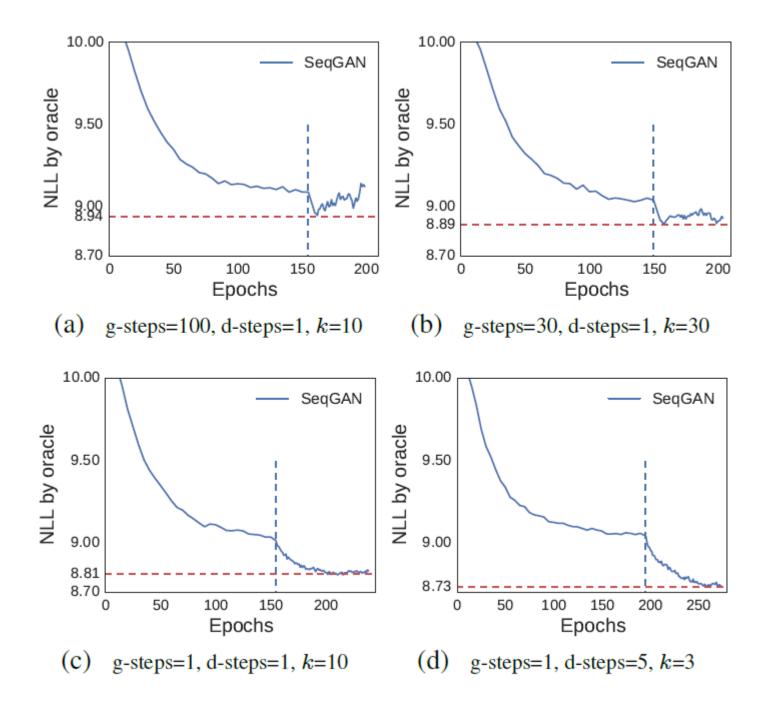
Experiments in paper

- Sentence generation: Synthetic data
 - Given an LSTM
 - Using the LSTM to generate a lot of sequences as "real data"
 - Generator learns from the "real data" by different approaches
 - Generator generates some sequences
 - Using the LSTM to compute the negative log likelihood (NLL) of the sequences
 - Smaller is better

Experiments in paper - Synthetic data

Algorithm	Random	MLE	SS	PG-BLEU	SeqGAN
NLL	10.310		8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	





Experiments in paper - Real data

Table 2: Chinese poem generation performance comparison.

Algorithm	Human score	<i>p</i> -value	BLEU-2	<i>p</i> -value
MLE	0.4165	0.0034	0.6670	$< 10^{-6}$
SeqGAN	0.5356	0.0054	0.7389	< 10
Real data	0.6011		0.746	

Table 3: Obama political speech generation performance.

Algorithm	BLEU-3	<i>p</i> -value	BLEU-4	<i>p</i> -value
MLE	0.519	$< 10^{-6}$	0.416	0.00014
SeqGAN	0.556	< ±0	0.427	

Table 4: Music generation performance comparison.

Algorithm	BLEU-4	<i>p</i> -value	MSE	<i>p</i> -value
MLE SeqGAN	0.9210 0.9406	$< 10^{-6}$	22.38 20.62	0.00034

Results - Chat-bot

Setting	adver-win	adver-lose
single-turn	0.62	0.18
multi-turn	0.72	0.10

Input	tell me how long have you had this falling sickness ?
Vanilla-MLE	i 'm not a doctor.
Vanilla-Sample	well everything you did was totally untrue .
REINFORCE	i don 't know how long it 's been .
REGS Monte Carlo	A few months, I guess .
Input	so i had the doctors test sammy 's response to conditioning .
Vanilla-MLE	sammy wrote the test sammy wrote the test .
Vanilla-Sample	objects pick objects up objects objects objects objects
REINFORCE	i 'm not sure that 's relevant .
REGS Monte Carlo	so he took the pills .
Input	what are you going to do ?
Vanilla-MLE	i 'm going to the movies .
Vanilla-Sample	get him outta here first !
REINFORCE	i 'm going to get you .
REGS Monte Carlo	i 'm going to get you a new car.
Input	they fear your power your intellect .
Vanilla-MLE	you 're the only one who knows what 's going on .
Vanilla-Sample	when they are conquered and you surrender they will control all of us .
REINFORCE	i 'm afraid i 'm not ready yet .
REGS Monte Carlo	i 'm not afraid of your power .

To Learn More ...

Algorithm – MaliGAN

Maximum-likelihood Augmented Discrete GAN

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real sentences *x* from database
 - Generate sentences \tilde{x} by Gen
 - Update Dis to maximize

$$\sum_{x} log D(x) + \sum_{\tilde{x}} log (1 - D(\tilde{x}))$$

Update Gen by gradient

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{r_D(x^i)}{\sum_{i=1}^{N} r_D(x^i)} - b \right) \nabla log P_{\theta}(x^i)$$

$$r_D(x^i) = \frac{D(x^i)}{1 - D(x^i)}$$

To learn more

- Professor forcing
 - Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio, "Professor Forcing: A New Algorithm for Training Recurrent Networks", NIPS, 2016
- Handling discrete output by methods other than policy gradient
 - MaliGAN, Boundary-seeking GAN
 - Yizhe Zhang, Zhe Gan, Lawrence Carin, "Generating Text via Adversarial Training", Workshop on Adversarial Training, NIPS, 2016
 - Matt J. Kusner, José Miguel Hernández-Lobato, "GANS for Sequences of Discrete Elements with the Gumbelsoftmax Distribution", arXiv preprint, 2016